

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/go-ethereum/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/go-ethereum/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Ethereum Go

Official golang implementation of the Ethereum protocol

 | Linux | OSX | ARM | Windows | Tests

———-|———|—–|—–|———|——
develop | [image: Build+Status] [https://build.ethdev.com/builders/Linux%20Go%20develop%20branch/builds/-1] | [image: Build+Status] [https://build.ethdev.com/builders/OSX%20Go%20develop%20branch/builds/-1] | [image: Build+Status] [https://build.ethdev.com/builders/ARM%20Go%20develop%20branch/builds/-1] | [image: Build+Status] [https://build.ethdev.com/builders/Windows%20Go%20develop%20branch/builds/-1] | [image: Buildr+Status] [https://travis-ci.org/ethereum/go-ethereum] [image: codecov.io] [http://codecov.io/github/ethereum/go-ethereum?branch=develop]
master | [image: Build+Status] [https://build.ethdev.com/builders/Linux%20Go%20master%20branch/builds/-1] | [image: Build+Status] [https://build.ethdev.com/builders/OSX%20Go%20master%20branch/builds/-1] | [image: Build+Status] [https://build.ethdev.com/builders/ARM%20Go%20master%20branch/builds/-1] | [image: Build+Status] [https://build.ethdev.com/builders/Windows%20Go%20master%20branch/builds/-1] | [image: Buildr+Status] [https://travis-ci.org/ethereum/go-ethereum] [image: codecov.io] [http://codecov.io/github/ethereum/go-ethereum?branch=master]

[image: API Reference] [https://godoc.org/github.com/ethereum/go-ethereum]
[image: Gitter] [https://gitter.im/ethereum/go-ethereum?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge]

Automated development builds

The following builds are build automatically by our build servers after each push to the develop [https://github.com/ethereum/go-ethereum/tree/develop] branch.

	Docker [https://registry.hub.docker.com/u/ethereum/client-go/]

	OS X [http://build.ethdev.com/builds/OSX%20Go%20develop%20branch/Mist-OSX-latest.dmg]

	Ubuntu
trusty [https://build.ethdev.com/builds/Linux%20Go%20develop%20deb%20i386-trusty/latest/] |
utopic [https://build.ethdev.com/builds/Linux%20Go%20develop%20deb%20i386-utopic/latest/]

	Windows 64-bit [https://build.ethdev.com/builds/Windows%20Go%20develop%20branch/Geth-Win64-latest.zip]

	ARM [https://build.ethdev.com/builds/ARM%20Go%20develop%20branch/geth-ARM-latest.tar.bz2]

Building the source

For prerequisites and detailed build instructions please read the
Installation Instructions [https://github.com/ethereum/go-ethereum/wiki/Building-Ethereum]
on the wiki.

Building geth requires both a Go and a C compiler.
You can install them using your favourite package manager.
Once the dependencies are installed, run

make geth

Executables

Go Ethereum comes with several wrappers/executables found in
the cmd directory [https://github.com/ethereum/go-ethereum/tree/develop/cmd]:

Command | |
———-|———|
geth | Ethereum CLI (ethereum command line interface client) |
bootnode | runs a bootstrap node for the Discovery Protocol |
ethtest | test tool which runs with the tests [https://github.com/ethereum/tests] suite: /path/to/test.json > ethtest --test BlockTests --stdin.
evm | is a generic Ethereum Virtual Machine: evm -code 60ff60ff -gas 10000 -price 0 -dump. See -h for a detailed description. |
disasm | disassembles EVM code: echo "6001" | disasm |
rlpdump | prints RLP structures |

Command line options

geth can be configured via command line options, environment variables and config files.

To get the options available:

geth help

For further details on options, see the wiki [https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options]

Contribution

If you’d like to contribute to go-ethereum please fork, fix, commit and
send a pull request. Commits who do not comply with the coding standards
are ignored (use gofmt!). If you send pull requests make absolute sure that you
commit on the develop branch and that you do not merge to master.
Commits that are directly based on master are simply ignored.

See Developers’ Guide [https://github.com/ethereum/go-ethereum/wiki/Developers’-Guide]
for more details on configuring your environment, testing, and
dependency management.

tests

Common tests for all clients to test against.

All files should be of the form:

{
 "test1name":
 {
 "test1property1": ...,
 "test1property2": ...,
 ...
 },
 "test2name":
 {
 "test2property1": ...,
 "test2property2": ...,
 ...
 }
}

Arrays are allowed, but don’t use them for sets of properties - only use them for data that is clearly a continuous contiguous sequence of values.

Automatic deployment of the random test generator

Testing is done in a Vagrant virtual machine

install vagrant, virtualbox, ansible, then do vagrant up. It should provison a basic machine. vagrant ssh to verify the machine is working as expected. vagrant terminate to reset machine to clean state.

System information

Geth version: geth version
OS & Version: Windows/Linux/OSX
Commit hash : (if develop)

Expected behaviour

Actual behaviour

Steps to reproduce the behaviour

Backtrace

[backtrace]

Can I have feature X

Before you do a feature request please check and make sure that it isn’t possible
through some other means. The JavaScript enabled console is a powerful feature
in the right hands. Please check our Bitchin’ tricks [https://github.com/ethereum/go-ethereum/wiki/bitchin-tricks] wiki page for more info
and help.

Contributing

If you’d like to contribute to go-ethereum please fork, fix, commit and
send a pull request. Commits who do not comply with the coding standards
are ignored (use gofmt!). If you send pull requests make absolute sure that you
commit on the develop branch and that you do not merge to master.
Commits that are directly based on master are simply ignored.

See Developers’ Guide [https://github.com/ethereum/go-ethereum/wiki/Developers’-Guide]
for more details on configuring your environment, testing, and
dependency management.

XHandler

[image: godoc] [https://godoc.org/github.com/rs/xhandler] [image: license] [https://raw.githubusercontent.com/rs/xhandler/master/LICENSE] [image: Build Status] [https://travis-ci.org/rs/xhandler] [image: Coverage] [http://gocover.io/github.com/rs/xhandler]

XHandler is a bridge between net/context [https://godoc.org/golang.org/x/net/context] and http.Handler.

It lets you enforce net/context in your handlers without sacrificing compatibility with existing http.Handlers nor imposing a specific router.

Thanks to net/context deadline management, xhandler is able to enforce a per request deadline and will cancel the context when the client closes the connection unexpectedly.

You may create your own net/context aware handler pretty much the same way as you would do with http.Handler.

Read more about xhandler on Dailymotion engineering blog [http://engineering.dailymotion.com/our-way-to-go/].

Installing

go get -u github.com/rs/xhandler

Usage

package main

import (
 "log"
 "net/http"
 "time"

 "github.com/rs/cors"
 "github.com/rs/xhandler"
 "golang.org/x/net/context"
)

type myMiddleware struct {
 next xhandler.HandlerC
}

func (h myMiddleware) ServeHTTPC(ctx context.Context, w http.ResponseWriter, r *http.Request) {
 ctx = context.WithValue(ctx, "test", "World")
 h.next.ServeHTTPC(ctx, w, r)
}

func main() {
 c := xhandler.Chain{}

 // Add close notifier handler so context is cancelled when the client closes
 // the connection
 c.UseC(xhandler.CloseHandler)

 // Add timeout handler
 c.UseC(xhandler.TimeoutHandler(2 * time.Second))

 // Middleware putting something in the context
 c.UseC(func(next xhandler.HandlerC) xhandler.HandlerC {
 return myMiddleware{next: next}
 })

 // Mix it with a non-context-aware middleware handler
 c.Use(cors.Default().Handler)

 // Final handler (using handlerFuncC), reading from the context
 xh := xhandler.HandlerFuncC(func(ctx context.Context, w http.ResponseWriter, r *http.Request) {
 value := ctx.Value("test").(string)
 w.Write([]byte("Hello " + value))
 })

 // Bridge context aware handlers with http.Handler using xhandler.Handle()
 http.Handle("/test", c.Handler(xh))

 if err := http.ListenAndServe(":8080", nil); err != nil {
 log.Fatal(err)
 }
}

Using xmux

Xhandler comes with an optional context aware muxer [https://github.com/rs/xmux] forked from httprouter [https://github.com/julienschmidt/httprouter]:

package main

import (
 "fmt"
 "log"
 "net/http"
 "time"

 "github.com/rs/xhandler"
 "github.com/rs/xmux"
 "golang.org/x/net/context"
)

func main() {
 c := xhandler.Chain{}

 // Append a context-aware middleware handler
 c.UseC(xhandler.CloseHandler)

 // Another context-aware middleware handler
 c.UseC(xhandler.TimeoutHandler(2 * time.Second))

 mux := xmux.New()

 // Use c.Handler to terminate the chain with your final handler
 mux.GET("/welcome/:name", xhandler.HandlerFuncC(func(ctx context.Context, w http.ResponseWriter, req *http.Request) {
 fmt.Fprintf(w, "Welcome %s!", xmux.Params(ctx).Get("name"))
 }))

 if err := http.ListenAndServe(":8080", c.Handler(mux)); err != nil {
 log.Fatal(err)
 }
}

See xmux [https://github.com/rs/xmux] for more examples.

Context Aware Middleware

Here is a list of net/context aware middleware handlers implementing xhandler.HandlerC interface.

Feel free to put up a PR linking your middleware if you have built one:

Middleware	Author	Description
———-	——	———–
xmux [https://github.com/rs/xmux]	Olivier Poitrey [https://github.com/rs]	HTTP request muxer
xlog [https://github.com/rs/xlog]	Olivier Poitrey [https://github.com/rs]	HTTP handler logger
xstats [https://github.com/rs/xstats]	Olivier Poitrey [https://github.com/rs]	A generic client for service instrumentation
xaccess [https://github.com/rs/xaccess]	Olivier Poitrey [https://github.com/rs]	HTTP handler access logger with xlog [https://github.com/rs/xlog] and xstats [https://github.com/rs/xstats]
cors [https://github.com/rs/cors]	Olivier Poitrey [https://github.com/rs]	Cross Origin Resource Sharing [http://www.w3.org/TR/cors/] (CORS) support

Licenses

All source code is licensed under the MIT License [https://raw.github.com/rs/xhandler/master/LICENSE].

Go CORS handler [image: godoc] [https://godoc.org/github.com/rs/cors] [image: license] [https://raw.githubusercontent.com/rs/cors/master/LICENSE] [image: build] [https://travis-ci.org/rs/cors]

CORS is a net/http handler implementing Cross Origin Resource Sharing W3 specification [http://www.w3.org/TR/cors/] in Golang.

Getting Started

After installing Go and setting up your GOPATH [http://golang.org/doc/code.html#GOPATH], create your first .go file. We’ll call it server.go.

package main

import (
 "net/http"

 "github.com/rs/cors"
)

func main() {
 h := http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 w.Header().Set("Content-Type", "application/json")
 w.Write([]byte("{\"hello\": \"world\"}"))
 })

 // cors.Default() setup the middleware with default options being
 // all origins accepted with simple methods (GET, POST). See
 // documentation below for more options.
 handler = cors.Default().Handler(h)
 http.ListenAndServe(":8080", handler)
}

Install cors:

go get github.com/rs/cors

Then run your server:

go run server.go

The server now runs on localhost:8080:

$ curl -D - -H 'Origin: http://foo.com' http://localhost:8080/
HTTP/1.1 200 OK
Access-Control-Allow-Origin: foo.com
Content-Type: application/json
Date: Sat, 25 Oct 2014 03:43:57 GMT
Content-Length: 18

{"hello": "world"}

More Examples

	net/http: examples/nethttp/server.go [https://github.com/rs/cors/blob/master/examples/nethttp/server.go]

	Goji [https://goji.io]: examples/goji/server.go [https://github.com/rs/cors/blob/master/examples/goji/server.go]

	Martini [http://martini.codegangsta.io]: examples/martini/server.go [https://github.com/rs/cors/blob/master/examples/martini/server.go]

	Negroni [https://github.com/codegangsta/negroni]: examples/negroni/server.go [https://github.com/rs/cors/blob/master/examples/negroni/server.go]

	Alice [https://github.com/justinas/alice]: examples/alice/server.go [https://github.com/rs/cors/blob/master/examples/alice/server.go]

Parameters

Parameters are passed to the middleware thru the cors.New method as follow:

c := cors.New(cors.Options{
 AllowedOrigins: []string{"http://foo.com"},
 AllowCredentials: true,
})

// Insert the middleware
handler = c.Handler(handler)

	AllowedOrigins []string: A list of origins a cross-domain request can be executed from. If the special * value is present in the list, all origins will be allowed. The default value is *.

	AllowedMethods []string: A list of methods the client is allowed to use with cross-domain requests.

	AllowedHeaders []string: A list of non simple headers the client is allowed to use with cross-domain requests. Default value is simple methods (GET and POST)

	ExposedHeaders []string: Indicates which headers are safe to expose to the API of a CORS API specification

	AllowCredentials bool: Indicates whether the request can include user credentials like cookies, HTTP authentication or client side SSL certificates. The default is false.

	MaxAge int: Indicates how long (in seconds) the results of a preflight request can be cached. The default is 0 which stands for no max age.

See API documentation [http://godoc.org/github.com/rs/cors] for more info.

Licenses

All source code is licensed under the MIT License [https://raw.github.com/rs/cors/master/LICENSE].

go-winio

This repository contains utilities for efficiently performing Win32 IO operations in
Go. Currently, this is focused on accessing named pipes and other file handles, and
for using named pipes as a net transport.

This code relies on IO completion ports to avoid blocking IO on system threads, allowing Go
to reuse the thread to schedule another goroutine. This limits support to Windows Vista and
newer operating systems. This is similar to the implementation of network sockets in Go’s net
package.

Please see the LICENSE file for licensing information.

Thanks to natefinch for the inspiration for this library. See https://github.com/natefinch/npipe
for another named pipe implementation.

go-colorable

Colorable writer for windows.

For example, most of logger packages doesn’t show colors on windows. (I know we can do it with ansicon. But I don’t want.)
This package is possible to handle escape sequence for ansi color on windows.

Too Bad!

[image:]

So Good!

[image:]

Usage

logrus.SetFormatter(&logrus.TextFormatter{ForceColors: true})
logrus.SetOutput(colorable.NewColorableStdout())

logrus.Info("succeeded")
logrus.Warn("not correct")
logrus.Error("something error")
logrus.Fatal("panic")

You can compile above code on non-windows OSs.

Installation

$ go get github.com/mattn/go-colorable

License

MIT

Author

Yasuhiro Matsumoto (a.k.a mattn)

go-isatty

isatty for golang

Usage

package main

import (
 "fmt"
 "github.com/mattn/go-isatty"
 "os"
)

func main() {
 if isatty.IsTerminal(os.Stdout.Fd()) {
 fmt.Println("Is Terminal")
 } else {
 fmt.Println("Is Not Terminal")
 }
}

Installation

$ go get github.com/mattn/go-isatty

License

MIT

Author

Yasuhiro Matsumoto (a.k.a mattn)

notify [image: GoDoc] [https://godoc.org/github.com/rjeczalik/notify] [image: Build Status] [https://travis-ci.org/rjeczalik/notify] [image: Build status] [https://ci.appveyor.com/project/rjeczalik/notify-246] [image: Coverage Status] [https://coveralls.io/r/rjeczalik/notify?branch=master]

Filesystem event notification library on steroids. (under active development)

Documentation

godoc.org/github.com/rjeczalik/notify [https://godoc.org/github.com/rjeczalik/notify]

Installation

~ $ go get -u github.com/rjeczalik/notify

Projects using notify

	github.com/rjeczalik/cmd/notify [https://godoc.org/github.com/rjeczalik/cmd/notify]

	github.com/cortesi/devd [https://github.com/cortesi/devd]

	github.com/cortesi/modd [https://github.com/cortesi/modd]

go-metrics

[image: travis build status]

Go port of Coda Hale’s Metrics library: https://github.com/dropwizard/metrics.

Documentation: http://godoc.org/github.com/rcrowley/go-metrics.

Usage

Create and update metrics:

c := metrics.NewCounter()
metrics.Register("foo", c)
c.Inc(47)

g := metrics.NewGauge()
metrics.Register("bar", g)
g.Update(47)

s := metrics.NewExpDecaySample(1028, 0.015) // or metrics.NewUniformSample(1028)
h := metrics.NewHistogram(s)
metrics.Register("baz", h)
h.Update(47)

m := metrics.NewMeter()
metrics.Register("quux", m)
m.Mark(47)

t := metrics.NewTimer()
metrics.Register("bang", t)
t.Time(func() {})
t.Update(47)

Periodically log every metric in human-readable form to standard error:

go metrics.Log(metrics.DefaultRegistry, 5 * time.Second, log.New(os.Stderr, "metrics: ", log.Lmicroseconds))

Periodically log every metric in slightly-more-parseable form to syslog:

w, _ := syslog.Dial("unixgram", "/dev/log", syslog.LOG_INFO, "metrics")
go metrics.Syslog(metrics.DefaultRegistry, 60e9, w)

Periodically emit every metric to Graphite using the Graphite client [https://github.com/cyberdelia/go-metrics-graphite]:

import "github.com/cyberdelia/go-metrics-graphite"

addr, _ := net.ResolveTCPAddr("tcp", "127.0.0.1:2003")
go graphite.Graphite(metrics.DefaultRegistry, 10e9, "metrics", addr)

Periodically emit every metric into InfluxDB:

NOTE: this has been pulled out of the library due to constant fluctuations
in the InfluxDB API. In fact, all client libraries are on their way out. see
issues #121 [https://github.com/rcrowley/go-metrics/issues/121] and
#124 [https://github.com/rcrowley/go-metrics/issues/124] for progress and details.

import "github.com/rcrowley/go-metrics/influxdb"

go influxdb.Influxdb(metrics.DefaultRegistry, 10e9, &influxdb.Config{
 Host: "127.0.0.1:8086",
 Database: "metrics",
 Username: "test",
 Password: "test",
})

Periodically upload every metric to Librato using the Librato client [https://github.com/mihasya/go-metrics-librato]:

Note: the client included with this repository under the librato package
has been deprecated and moved to the repository linked above.

import "github.com/mihasya/go-metrics-librato"

go librato.Librato(metrics.DefaultRegistry,
 10e9, // interval
 "example@example.com", // account owner email address
 "token", // Librato API token
 "hostname", // source
 []float64{0.95}, // percentiles to send
 time.Millisecond, // time unit
)

Periodically emit every metric to StatHat:

import "github.com/rcrowley/go-metrics/stathat"

go stathat.Stathat(metrics.DefaultRegistry, 10e9, "example@example.com")

Maintain all metrics along with expvars at /debug/metrics:

This uses the same mechanism as the official expvar [http://golang.org/pkg/expvar/]
but exposed under /debug/metrics, which shows a json representation of all your usual expvars
as well as all your go-metrics.

import "github.com/rcrowley/go-metrics/exp"

exp.Exp(metrics.DefaultRegistry)

Installation

go get github.com/rcrowley/go-metrics

StatHat support additionally requires their Go client:

go get github.com/stathat/go

Publishing Metrics

Clients are available for the following destinations:

	Librato - https://github.com/mihasya/go-metrics-librato

	Graphite - https://github.com/cyberdelia/go-metrics-graphite

	InfluxDB - https://github.com/vrischmann/go-metrics-influxdb

Memory usage

(Highly unscientific.)

Command used to gather static memory usage:

grep ^Vm "/proc/$(ps fax | grep [m]etrics-bench | awk '{print $1}')/status"

Program used to gather baseline memory usage:

package main

import "time"

func main() {
 time.Sleep(600e9)
}

Baseline

VmPeak: 42604 kB
VmSize: 42604 kB
VmLck: 0 kB
VmHWM: 1120 kB
VmRSS: 1120 kB
VmData: 35460 kB
VmStk: 136 kB
VmExe: 1020 kB
VmLib: 1848 kB
VmPTE: 36 kB
VmSwap: 0 kB

Program used to gather metric memory usage (with other metrics being similar):

package main

import (
 "fmt"
 "metrics"
 "time"
)

func main() {
 fmt.Sprintf("foo")
 metrics.NewRegistry()
 time.Sleep(600e9)
}

1000 counters registered

VmPeak: 44016 kB
VmSize: 44016 kB
VmLck: 0 kB
VmHWM: 1928 kB
VmRSS: 1928 kB
VmData: 36868 kB
VmStk: 136 kB
VmExe: 1024 kB
VmLib: 1848 kB
VmPTE: 40 kB
VmSwap: 0 kB

1.412 kB virtual, TODO 0.808 kB resident per counter.

100000 counters registered

VmPeak: 55024 kB
VmSize: 55024 kB
VmLck: 0 kB
VmHWM: 12440 kB
VmRSS: 12440 kB
VmData: 47876 kB
VmStk: 136 kB
VmExe: 1024 kB
VmLib: 1848 kB
VmPTE: 64 kB
VmSwap: 0 kB

0.1242 kB virtual, 0.1132 kB resident per counter.

1000 gauges registered

VmPeak: 44012 kB
VmSize: 44012 kB
VmLck: 0 kB
VmHWM: 1928 kB
VmRSS: 1928 kB
VmData: 36868 kB
VmStk: 136 kB
VmExe: 1020 kB
VmLib: 1848 kB
VmPTE: 40 kB
VmSwap: 0 kB

1.408 kB virtual, 0.808 kB resident per counter.

100000 gauges registered

VmPeak: 55020 kB
VmSize: 55020 kB
VmLck: 0 kB
VmHWM: 12432 kB
VmRSS: 12432 kB
VmData: 47876 kB
VmStk: 136 kB
VmExe: 1020 kB
VmLib: 1848 kB
VmPTE: 60 kB
VmSwap: 0 kB

0.12416 kB virtual, 0.11312 resident per gauge.

1000 histograms with a uniform sample size of 1028

VmPeak: 72272 kB
VmSize: 72272 kB
VmLck: 0 kB
VmHWM: 16204 kB
VmRSS: 16204 kB
VmData: 65100 kB
VmStk: 136 kB
VmExe: 1048 kB
VmLib: 1848 kB
VmPTE: 80 kB
VmSwap: 0 kB

29.668 kB virtual, TODO 15.084 resident per histogram.

10000 histograms with a uniform sample size of 1028

VmPeak: 256912 kB
VmSize: 256912 kB
VmLck: 0 kB
VmHWM: 146204 kB
VmRSS: 146204 kB
VmData: 249740 kB
VmStk: 136 kB
VmExe: 1048 kB
VmLib: 1848 kB
VmPTE: 448 kB
VmSwap: 0 kB

21.4308 kB virtual, 14.5084 kB resident per histogram.

50000 histograms with a uniform sample size of 1028

VmPeak: 908112 kB
VmSize: 908112 kB
VmLck: 0 kB
VmHWM: 645832 kB
VmRSS: 645588 kB
VmData: 900940 kB
VmStk: 136 kB
VmExe: 1048 kB
VmLib: 1848 kB
VmPTE: 1716 kB
VmSwap: 1544 kB

17.31016 kB virtual, 12.88936 kB resident per histogram.

1000 histograms with an exponentially-decaying sample size of 1028 and alpha of 0.015

VmPeak: 62480 kB
VmSize: 62480 kB
VmLck: 0 kB
VmHWM: 11572 kB
VmRSS: 11572 kB
VmData: 55308 kB
VmStk: 136 kB
VmExe: 1048 kB
VmLib: 1848 kB
VmPTE: 64 kB
VmSwap: 0 kB

19.876 kB virtual, 10.452 kB resident per histogram.

10000 histograms with an exponentially-decaying sample size of 1028 and alpha of 0.015

VmPeak: 153296 kB
VmSize: 153296 kB
VmLck: 0 kB
VmHWM: 101176 kB
VmRSS: 101176 kB
VmData: 146124 kB
VmStk: 136 kB
VmExe: 1048 kB
VmLib: 1848 kB
VmPTE: 240 kB
VmSwap: 0 kB

11.0692 kB virtual, 10.0056 kB resident per histogram.

50000 histograms with an exponentially-decaying sample size of 1028 and alpha of 0.015

VmPeak: 557264 kB
VmSize: 557264 kB
VmLck: 0 kB
VmHWM: 501056 kB
VmRSS: 501056 kB
VmData: 550092 kB
VmStk: 136 kB
VmExe: 1048 kB
VmLib: 1848 kB
VmPTE: 1032 kB
VmSwap: 0 kB

10.2932 kB virtual, 9.99872 kB resident per histogram.

1000 meters

VmPeak: 74504 kB
VmSize: 74504 kB
VmLck: 0 kB
VmHWM: 24124 kB
VmRSS: 24124 kB
VmData: 67340 kB
VmStk: 136 kB
VmExe: 1040 kB
VmLib: 1848 kB
VmPTE: 92 kB
VmSwap: 0 kB

31.9 kB virtual, 23.004 kB resident per meter.

10000 meters

VmPeak: 278920 kB
VmSize: 278920 kB
VmLck: 0 kB
VmHWM: 227300 kB
VmRSS: 227300 kB
VmData: 271756 kB
VmStk: 136 kB
VmExe: 1040 kB
VmLib: 1848 kB
VmPTE: 488 kB
VmSwap: 0 kB

23.6316 kB virtual, 22.618 kB resident per meter.

 [image: Coverage] [http://gocover.io/github.com/codegangsta/cli]
[image: Build Status] [https://travis-ci.org/codegangsta/cli]
[image: GoDoc] [https://godoc.org/github.com/codegangsta/cli]

cli.go

cli.go is simple, fast, and fun package for building command line apps in Go. The goal is to enable developers to write fast and distributable command line applications in an expressive way.

Overview

Command line apps are usually so tiny that there is absolutely no reason why your code should not be self-documenting. Things like generating help text and parsing command flags/options should not hinder productivity when writing a command line app.

This is where cli.go comes into play. cli.go makes command line programming fun, organized, and expressive!

Installation

Make sure you have a working Go environment (go 1.1+ is required). See the install instructions [http://golang.org/doc/install.html].

To install cli.go, simply run:

$ go get github.com/codegangsta/cli

Make sure your PATH includes to the $GOPATH/bin directory so your commands can be easily used:

export PATH=$PATH:$GOPATH/bin

Getting Started

One of the philosophies behind cli.go is that an API should be playful and full of discovery. So a cli.go app can be as little as one line of code in main().

package main

import (
 "os"
 "github.com/codegangsta/cli"
)

func main() {
 cli.NewApp().Run(os.Args)
}

This app will run and show help text, but is not very useful. Let’s give an action to execute and some help documentation:

package main

import (
 "os"
 "github.com/codegangsta/cli"
)

func main() {
 app := cli.NewApp()
 app.Name = "boom"
 app.Usage = "make an explosive entrance"
 app.Action = func(c *cli.Context) {
 println("boom! I say!")
 }

 app.Run(os.Args)
}

Running this already gives you a ton of functionality, plus support for things like subcommands and flags, which are covered below.

Example

Being a programmer can be a lonely job. Thankfully by the power of automation that is not the case! Let’s create a greeter app to fend off our demons of loneliness!

Start by creating a directory named greet, and within it, add a file, greet.go with the following code in it:

package main

import (
 "os"
 "github.com/codegangsta/cli"
)

func main() {
 app := cli.NewApp()
 app.Name = "greet"
 app.Usage = "fight the loneliness!"
 app.Action = func(c *cli.Context) {
 println("Hello friend!")
 }

 app.Run(os.Args)
}

Install our command to the $GOPATH/bin directory:

$ go install

Finally run our new command:

$ greet
Hello friend!

cli.go also generates neat help text:

$ greet help
NAME:
 greet - fight the loneliness!

USAGE:
 greet [global options] command [command options] [arguments...]

VERSION:
 0.0.0

COMMANDS:
 help, h Shows a list of commands or help for one command

GLOBAL OPTIONS
 --version Shows version information

Arguments

You can lookup arguments by calling the Args function on cli.Context.

...
app.Action = func(c *cli.Context) {
 println("Hello", c.Args()[0])
}
...

Flags

Setting and querying flags is simple.

...
app.Flags = []cli.Flag {
 cli.StringFlag{
 Name: "lang",
 Value: "english",
 Usage: "language for the greeting",
 },
}
app.Action = func(c *cli.Context) {
 name := "someone"
 if len(c.Args()) > 0 {
 name = c.Args()[0]
 }
 if c.String("lang") == "spanish" {
 println("Hola", name)
 } else {
 println("Hello", name)
 }
}
...

You can also set a destination variable for a flag, to which the content will be scanned.

...
var language string
app.Flags = []cli.Flag {
 cli.StringFlag{
 Name: "lang",
 Value: "english",
 Usage: "language for the greeting",
 Destination: &language,
 },
}
app.Action = func(c *cli.Context) {
 name := "someone"
 if len(c.Args()) > 0 {
 name = c.Args()[0]
 }
 if language == "spanish" {
 println("Hola", name)
 } else {
 println("Hello", name)
 }
}
...

See full list of flags at http://godoc.org/github.com/codegangsta/cli

Alternate Names

You can set alternate (or short) names for flags by providing a comma-delimited list for the Name. e.g.

app.Flags = []cli.Flag {
 cli.StringFlag{
 Name: "lang, l",
 Value: "english",
 Usage: "language for the greeting",
 },
}

That flag can then be set with --lang spanish or -l spanish. Note that giving two different forms of the same flag in the same command invocation is an error.

Values from the Environment

You can also have the default value set from the environment via EnvVar. e.g.

app.Flags = []cli.Flag {
 cli.StringFlag{
 Name: "lang, l",
 Value: "english",
 Usage: "language for the greeting",
 EnvVar: "APP_LANG",
 },
}

The EnvVar may also be given as a comma-delimited “cascade”, where the first environment variable that resolves is used as the default.

app.Flags = []cli.Flag {
 cli.StringFlag{
 Name: "lang, l",
 Value: "english",
 Usage: "language for the greeting",
 EnvVar: "LEGACY_COMPAT_LANG,APP_LANG,LANG",
 },
}

Subcommands

Subcommands can be defined for a more git-like command line app.

...
app.Commands = []cli.Command{
 {
 Name: "add",
 Aliases: []string{"a"},
 Usage: "add a task to the list",
 Action: func(c *cli.Context) {
 println("added task: ", c.Args().First())
 },
 },
 {
 Name: "complete",
 Aliases: []string{"c"},
 Usage: "complete a task on the list",
 Action: func(c *cli.Context) {
 println("completed task: ", c.Args().First())
 },
 },
 {
 Name: "template",
 Aliases: []string{"r"},
 Usage: "options for task templates",
 Subcommands: []cli.Command{
 {
 Name: "add",
 Usage: "add a new template",
 Action: func(c *cli.Context) {
 println("new task template: ", c.Args().First())
 },
 },
 {
 Name: "remove",
 Usage: "remove an existing template",
 Action: func(c *cli.Context) {
 println("removed task template: ", c.Args().First())
 },
 },
 },
 },
}
...

Bash Completion

You can enable completion commands by setting the EnableBashCompletion
flag on the App object. By default, this setting will only auto-complete to
show an app’s subcommands, but you can write your own completion methods for
the App or its subcommands.

...
var tasks = []string{"cook", "clean", "laundry", "eat", "sleep", "code"}
app := cli.NewApp()
app.EnableBashCompletion = true
app.Commands = []cli.Command{
 {
 Name: "complete",
 Aliases: []string{"c"},
 Usage: "complete a task on the list",
 Action: func(c *cli.Context) {
 println("completed task: ", c.Args().First())
 },
 BashComplete: func(c *cli.Context) {
 // This will complete if no args are passed
 if len(c.Args()) > 0 {
 return
 }
 for _, t := range tasks {
 fmt.Println(t)
 }
 },
 }
}
...

To Enable

Source the autocomplete/bash_autocomplete file in your .bashrc file while
setting the PROG variable to the name of your program:

PROG=myprogram source /.../cli/autocomplete/bash_autocomplete

To Distribute

Copy autocomplete/bash_autocomplete into /etc/bash_completion.d/ and rename
it to the name of the program you wish to add autocomplete support for (or
automatically install it there if you are distributing a package). Don’t forget
to source the file to make it active in the current shell.

sudo cp src/bash_autocomplete /etc/bash_completion.d/<myprogram>
source /etc/bash_completion.d/<myprogram>

Alternatively, you can just document that users should source the generic
autocomplete/bash_autocomplete in their bash configuration with $PROG set
to the name of their program (as above).

Contribution Guidelines

Feel free to put up a pull request to fix a bug or maybe add a feature. I will give it a code review and make sure that it does not break backwards compatibility. If I or any other collaborators agree that it is in line with the vision of the project, we will work with you to get the code into a mergeable state and merge it into the master branch.

If you have contributed something significant to the project, I will most likely add you as a collaborator. As a collaborator you are given the ability to merge others pull requests. It is very important that new code does not break existing code, so be careful about what code you do choose to merge. If you have any questions feel free to link @codegangsta to the issue in question and we can review it together.

If you feel like you have contributed to the project but have not yet been added as a collaborator, I probably forgot to add you. Hit @codegangsta up over email and we will get it figured out.

 goupnp is a UPnP client library for Go

Installation

Run go get -u github.com/huin/goupnp.

Documentation

All doc links below are for [image: GoDoc].

Supported DCPs (you probably want to start with one of these):

	av1 [https://godoc.org/github.com/huin/goupnp/dcps/av1] - Client for UPnP Device Control Protocol MediaServer v1 and MediaRenderer v1.

	internetgateway1 [https://godoc.org/github.com/huin/goupnp/dcps/internetgateway1] - Client for UPnP Device Control Protocol Internet Gateway Device v1.

	internetgateway2 [https://godoc.org/github.com/huin/goupnp/dcps/internetgateway2] - Client for UPnP Device Control Protocol Internet Gateway Device v2.

Core components:

	(goupnp) [https://godoc.org/github.com/huin/goupnp] core library - contains datastructures and utilities typically used by the implemented DCPs.

	httpu [https://godoc.org/github.com/huin/goupnp/httpu] HTTPU implementation, underlies SSDP.

	ssdp [https://godoc.org/github.com/huin/goupnp/ssdp] SSDP client implementation (simple service discovery protocol) - used to discover UPnP services on a network.

	soap [https://godoc.org/github.com/huin/goupnp/soap] SOAP client implementation (simple object access protocol) - used to communicate with discovered services.

Regenerating dcps generated source code:

	Install gotasks: go get -u github.com/jingweno/gotask

	Change to the gotasks directory: cd gotasks

	Run specgen task: gotask specgen

Supporting additional UPnP devices and services:

Supporting additional services is, in the trivial case, simply a matter of
adding the service to the dcpMetadata whitelist in gotasks/specgen_task.go,
regenerating the source code (see above), and committing that source code.

However, it would be helpful if anyone needing such a service could test the
service against the service they have, and then reporting any trouble
encountered as an issue on this
project [https://github.com/huin/goupnp/issues/new]. If it just works, then
please report at least minimal working functionality as an issue, and
optionally contribute the metadata upstream.

Color [image: GoDoc] [http://godoc.org/github.com/fatih/color] [image: Build Status] [https://travis-ci.org/fatih/color]

Color lets you use colorized outputs in terms of ANSI Escape Codes [http://en.wikipedia.org/wiki/ANSI_escape_code#Colors] in Go (Golang). It has support for Windows too! The API can be used in several ways, pick one that suits you.

[image: Color]

Install

go get github.com/fatih/color

Examples

Standard colors

// Print with default helper functions
color.Cyan("Prints text in cyan.")

// A newline will be appended automatically
color.Blue("Prints %s in blue.", "text")

// These are using the default foreground colors
color.Red("We have red")
color.Magenta("And many others ..")

Mix and reuse colors

// Create a new color object
c := color.New(color.FgCyan).Add(color.Underline)
c.Println("Prints cyan text with an underline.")

// Or just add them to New()
d := color.New(color.FgCyan, color.Bold)
d.Printf("This prints bold cyan %s\n", "too!.")

// Mix up foreground and background colors, create new mixes!
red := color.New(color.FgRed)

boldRed := red.Add(color.Bold)
boldRed.Println("This will print text in bold red.")

whiteBackground := red.Add(color.BgWhite)
whiteBackground.Println("Red text with white background.")

Custom print functions (PrintFunc)

// Create a custom print function for convenience
red := color.New(color.FgRed).PrintfFunc()
red("Warning")
red("Error: %s", err)

// Mix up multiple attributes
notice := color.New(color.Bold, color.FgGreen).PrintlnFunc()
notice("Don't forget this...")

Insert into noncolor strings (SprintFunc)

// Create SprintXxx functions to mix strings with other non-colorized strings:
yellow := color.New(color.FgYellow).SprintFunc()
red := color.New(color.FgRed).SprintFunc()
fmt.Printf("This is a %s and this is %s.\n", yellow("warning"), red("error"))

info := color.New(color.FgWhite, color.BgGreen).SprintFunc()
fmt.Printf("This %s rocks!\n", info("package"))

// Use helper functions
fmt.Printf("This", color.RedString("warning"), "should be not neglected.")
fmt.Printf(color.GreenString("Info:"), "an important message.")

// Windows supported too! Just don't forget to change the output to color.Output
fmt.Fprintf(color.Output, "Windows support: %s", color.GreenString("PASS"))

Plug into existing code

// Use handy standard colors
color.Set(color.FgYellow)

fmt.Println("Existing text will now be in yellow")
fmt.Printf("This one %s\n", "too")

color.Unset() // Don't forget to unset

// You can mix up parameters
color.Set(color.FgMagenta, color.Bold)
defer color.Unset() // Use it in your function

fmt.Println("All text will now be bold magenta.")

Disable color

There might be a case where you want to disable color output (for example to
pipe the standard output of your app to somewhere else). Color has support to
disable colors both globally and for single color definition. For example
suppose you have a CLI app and a --no-color bool flag. You can easily disable
the color output with:

var flagNoColor = flag.Bool("no-color", false, "Disable color output")

if *flagNoColor {
 color.NoColor = true // disables colorized output
}

It also has support for single color definitions (local). You can
disable/enable color output on the fly:

c := color.New(color.FgCyan)
c.Println("Prints cyan text")

c.DisableColor()
c.Println("This is printed without any color")

c.EnableColor()
c.Println("This prints again cyan...")

Todo

	Save/Return previous values

	Evaluate fmt.Formatter interface

Credits

	Fatih Arslan [https://github.com/fatih]

	Windows support via @shiena: ansicolor [https://github.com/shiena/ansicolor]

License

The MIT License (MIT) - see LICENSE.md [https://github.com/fatih/color/blob/master/LICENSE.md] for more details

 The MIT License (MIT)

Copyright (c) 2013 Fatih Arslan

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

gateway

A very simple library for discovering the IP address of the local LAN gateway.

Provides implementations for Linux, OS X (Darwin) and Windows.

Pull requests for other OSs happily considered!

go-nat-pmp

A Go language client for the NAT-PMP internet protocol for port mapping and discovering the external
IP address of a firewall.

NAT-PMP is supported by Apple brand routers and open source routers like Tomato and DD-WRT.

See http://tools.ietf.org/html/draft-cheshire-nat-pmp-03

Get the package

go get -u github.com/jackpal/go-nat-pmp

Usage

import natpmp "github.com/jackpal/go-nat-pmp"

client := natpmp.NewClient(gatewayIP)
response, err := client.GetExternalAddress()
if err != nil {
 return
}
print("External IP address:", response.ExternalIPAddress)

Notes

There doesn’t seem to be an easy way to programmatically determine the address of the default gateway.
(Linux and OSX have a “routes” kernel API that can be examined to get this information, but there is
no Go package for getting this information.)

Clients

This library is used in the Taipei Torrent BitTorrent client http://github.com/jackpal/Taipei-Torrent

Complete documentation

http://godoc.org/github.com/jackpal/go-nat-pmp

License

This project is licensed under the Apache License 2.0.

 [image: Build Status] [https://travis-ci.org/ethereum/ethash]
[image: Windows Build Status] [https://ci.appveyor.com/project/debris/ethash-nr37r/branch/master]

Ethash

For details on this project, please see the Ethereum wiki:
https://github.com/ethereum/wiki/wiki/Ethash

Coding Style for C++ code:

Follow the same exact style as in cpp-ethereum [https://github.com/ethereum/cpp-ethereum/blob/develop/CodingStandards.txt]

Coding Style for C code:

The main thing above all is code consistency.

	Tabs for indentation. A tab is 4 spaces

	Try to stick to the K&R [http://en.wikipedia.org/wiki/Indent_style#K.26R_style],
especially for the C code.

	Keep the line lengths reasonable. No hard limit on 80 characters but don’t go further
than 110. Some people work with multiple buffers next to each other.
Make them like you :)

Termbox

Termbox is a library that provides a minimalistic API which allows the programmer to write text-based user interfaces. The library is crossplatform and has both terminal-based implementations on *nix operating systems and a winapi console based implementation for windows operating systems. The basic idea is an abstraction of the greatest common subset of features available on all major terminals and other terminal-like APIs in a minimalistic fashion. Small API means it is easy to implement, test, maintain and learn it, that’s what makes the termbox a distinct library in its area.

Installation

Install and update this go package with go get -u github.com/nsf/termbox-go

Examples

For examples of what can be done take a look at demos in the _demos directory. You can try them with go run: go run _demos/keyboard.go

There are also some interesting projects using termbox-go:

	godit [https://github.com/nsf/godit] is an emacsish lightweight text editor written using termbox.

	gomatrix [https://github.com/GeertJohan/gomatrix] connects to The Matrix and displays its data streams in your terminal.

	gotetris [https://github.com/jjinux/gotetris] is an implementation of Tetris.

	sokoban-go [https://github.com/rn2dy/sokoban-go] is an implementation of sokoban game.

	hecate [https://github.com/evanmiller/hecate] is a hex editor designed by Satan.

	httopd [https://github.com/verdverm/httopd] is top for httpd logs.

	mop [https://github.com/michaeldv/mop] is stock market tracker for hackers.

	termui [https://github.com/gizak/termui] is a terminal dashboard.

	termloop [https://github.com/JoelOtter/termloop] is a terminal game engine.

	xterm-color-chart [https://github.com/kutuluk/xterm-color-chart] is a XTerm 256 color chart.

	gocui [https://github.com/jroimartin/gocui] is a minimalist Go library aimed at creating console user interfaces.

	dry [https://github.com/moncho/dry] is an interactive cli to manage Docker containers.

API reference

godoc.org/github.com/nsf/termbox-go [http://godoc.org/github.com/nsf/termbox-go]

golang-lru

This provides the lru package which implements a fixed-size
thread safe LRU cache. It is based on the cache in Groupcache.

Documentation

Full docs are available on Godoc [http://godoc.org/github.com/hashicorp/golang-lru]

Example

Using the LRU is very simple:

l, _ := New(128)
for i := 0; i < 256; i++ {
 l.Add(i, nil)
}
if l.Len() != 128 {
 panic(fmt.Sprintf("bad len: %v", l.Len()))
}

 This project was automatically exported from code.google.com/p/go-uuid

uuid [image: build status]

The uuid package generates and inspects UUIDs based on RFC 412 [http://tools.ietf.org/html/rfc4122] and DCE 1.1: Authentication and Security Services.

Install

go get github.com/pborman/uuid

Documentation

[image: GoDoc] [http://godoc.org/github.com/pborman/uuid]

Full go doc style documentation for the package can be viewed online without installing this package by using the GoDoc site here:
http://godoc.org/github.com/pborman/uuid

termui [image: Build Status] [https://travis-ci.org/gizak/termui] [image: Doc Status] [https://godoc.org/github.com/gizak/termui]

[image: demo cast under osx 10.10; Terminal.app; Menlo Regular 12pt.)]

 Liner

Liner

Liner is a command line editor with history. It was inspired by linenoise;
everything Unix-like is a VT100 (or is trying very hard to be). If your
terminal is not pretending to be a VT100, change it. Liner also support
Windows.

Liner is released under the X11 license (which is similar to the new BSD
license).

Line Editing

The following line editing commands are supported on platforms and terminals
that Liner supports:

Keystroke | Action
——— | ——
Ctrl-A, Home | Move cursor to beginning of line
Ctrl-E, End | Move cursor to end of line
Ctrl-B, Left | Move cursor one character left
Ctrl-F, Right| Move cursor one character right
Ctrl-Left, Alt-B | Move cursor to previous word
Ctrl-Right, Alt-F | Move cursor to next word
Ctrl-D, Del | (if line is not empty) Delete character under cursor
Ctrl-D | (if line is empty) End of File - usually quits application
Ctrl-C | Reset input (create new empty prompt)
Ctrl-L | Clear screen (line is unmodified)
Ctrl-T | Transpose previous character with current character
Ctrl-H, BackSpace | Delete character before cursor
Ctrl-W | Delete word leading up to cursor
Ctrl-K | Delete from cursor to end of line
Ctrl-U | Delete from start of line to cursor
Ctrl-P, Up | Previous match from history
Ctrl-N, Down | Next match from history
Ctrl-R | Reverse Search history (Ctrl-S forward, Ctrl-G cancel)
Ctrl-Y | Paste from Yank buffer (Alt-Y to paste next yank instead)
Tab | Next completion
Shift-Tab | (after Tab) Previous completion

Getting started

package main

import (
 "log"
 "os"
 "path/filepath"
 "strings"

 "github.com/peterh/liner"
)

var (
 history_fn = filepath.Join(os.TempDir(), ".liner_example_history")
 names = []string{"john", "james", "mary", "nancy"}
)

func main() {
 line := liner.NewLiner()
 defer line.Close()

 line.SetCtrlCAborts(true)

 line.SetCompleter(func(line string) (c []string) {
 for _, n := range names {
 if strings.HasPrefix(n, strings.ToLower(line)) {
 c = append(c, n)
 }
 }
 return
 })

 if f, err := os.Open(history_fn); err == nil {
 line.ReadHistory(f)
 f.Close()
 }

 if name, err := line.Prompt("What is your name? "); err == nil {
 log.Print("Got: ", name)
 line.AppendHistory(name)
 } else if err == liner.ErrPromptAborted {
 log.Print("Aborted")
 } else {
 log.Print("Error reading line: ", err)
 }

 if f, err := os.Create(history_fn); err != nil {
 log.Print("Error writing history file: ", err)
 } else {
 line.WriteHistory(f)
 f.Close()
 }
}

For documentation, see http://godoc.org/github.com/peterh/liner

 cp

cp

[image: GoDoc] [https://godoc.org/github.com/cespare/cp]

cp is a small Go package for copying files and directories.

The API may change because I want to add some options in the future (for merging with existing dirs).

It does not currently handle Windows specifically (I think it may require some special treatment).

 Set

Set [image: GoDoc] [https://godoc.org/gopkg.in/fatih/set.v0] [image: Build Status] [https://travis-ci.org/fatih/set]

Set is a basic and simple, hash-based, Set data structure implementation
in Go (Golang).

Set provides both threadsafe and non-threadsafe implementations of a generic
set data structure. The thread safety encompasses all operations on one set.
Operations on multiple sets are consistent in that the elements of each set
used was valid at exactly one point in time between the start and the end of
the operation. Because it’s thread safe, you can use it concurrently with your
goroutines.

For usage see examples below or click on the godoc badge.

Install and Usage

Install the package with:

go get gopkg.in/fatih/set.v0

Import it with:

import "gopkg.in/fatih/set.v0"

and use set as the package name inside the code.

Examples

Initialization of a new Set

// create a set with zero items
s := set.New()
s := set.NewNonTS() // non thread-safe version

// ... or with some initial values
s := set.New("istanbul", "frankfurt", 30.123, "san francisco", 1234)
s := set.NewNonTS("kenya", "ethiopia", "sumatra")

Basic Operations

// add items
s.Add("istanbul")
s.Add("istanbul") // nothing happens if you add duplicate item

// add multiple items
s.Add("ankara", "san francisco", 3.14)

// remove item
s.Remove("frankfurt")
s.Remove("frankfurt") // nothing happes if you remove a nonexisting item

// remove multiple items
s.Remove("barcelona", 3.14, "ankara")

// removes an arbitary item and return it
item := s.Pop()

// create a new copy
other := s.Copy()

// remove all items
s.Clear()

// number of items in the set
len := s.Size()

// return a list of items
items := s.List()

// string representation of set
fmt.Printf("set is %s", s.String())

Check Operations

// check for set emptiness, returns true if set is empty
s.IsEmpty()

// check for a single item exist
s.Has("istanbul")

// ... or for multiple items. This will return true if all of the items exist.
s.Has("istanbul", "san francisco", 3.14)

// create two sets for the following checks...
s := s.New("1", "2", "3", "4", "5")
t := s.New("1", "2", "3")

// check if they are the same
if !s.IsEqual(t) {
 fmt.Println("s is not equal to t")
}

// if s contains all elements of t
if s.IsSubset(t) {
 fmt.Println("t is a subset of s")
}

// ... or if s is a superset of t
if t.IsSuperset(s) {
 fmt.Println("s is a superset of t")
}

Set Operations

// let us initialize two sets with some values
a := set.New("ankara", "berlin", "san francisco")
b := set.New("frankfurt", "berlin")

// creates a new set with the items in a and b combined.
// [frankfurt, berlin, ankara, san francisco]
c := set.Union(a, b)

// contains items which is in both a and b
// [berlin]
c := set.Intersection(a, b)

// contains items which are in a but not in b
// [ankara, san francisco]
c := set.Difference(a, b)

// contains items which are in one of either, but not in both.
// [frankfurt, ankara, san francisco]
c := set.SymmetricDifference(a, b)

// like Union but saves the result back into a.
a.Merge(b)

// removes the set items which are in b from a and saves the result back into a.
a.Separate(b)

Multiple Set Operations

a := set.New("1", "3", "4", "5")
b := set.New("2", "3", "4", "5")
c := set.New("4", "5", "6", "7")

// creates a new set with items in a, b and c
// [1 2 3 4 5 6 7]
u := set.Union(a, b, c)

// creates a new set with items in a but not in b and c
// [1]
u := set.Difference(a, b, c)

// creates a new set with items that are common to a, b and c
// [5]
u := set.Intersection(a, b, c)

Helper methods

The Slice functions below are a convenient way to extract or convert your Set data
into basic data types.

// create a set of mixed types
s := set.New("ankara", "5", "8", "san francisco", 13, 21)

// convert s into a slice of strings (type is []string)
// [ankara 5 8 san francisco]
t := set.StringSlice(s)

// u contains a slice of ints (type is []int)
// [13, 21]
u := set.IntSlice(s)

Concurrent safe usage

Below is an example of a concurrent way that uses set. We call ten functions
concurrently and wait until they are finished. It basically creates a new
string for each goroutine and adds it to our set.

package main

import (
 "fmt"
 "github.com/fatih/set"
 "strconv"
 "sync"
)

func main() {
 var wg sync.WaitGroup // this is just for waiting until all goroutines finish

 // Initialize our thread safe Set
 s := set.New()

 // Add items concurrently (item1, item2, and so on)
 for i := 0; i < 10; i++ {
 wg.Add(1)
 go func(i int) {
 item := "item" + strconv.Itoa(i)
 fmt.Println("adding", item)
 s.Add(item)
 wg.Done()
 }(i)
 }

 // Wait until all concurrent calls finished and print our set
 wg.Wait()
 fmt.Println(s)
}

Credits

	Fatih Arslan [https://github.com/fatih]

	Arne Hormann [https://github.com/arnehormann]

	Sam Boyer [https://github.com/sdboyer]

	Ralph Loizzo [https://github.com/friartech]

License

The MIT License (MIT) - see LICENSE.md for more details

 <no title>

 The MIT License (MIT)

Copyright (c) 2013 Fatih Arslan

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Instructions

Instructions

Install the package with:

go get gopkg.in/check.v1

Import it with:

import "gopkg.in/check.v1"

and use check as the package name inside the code.

For more details, visit the project page:

	http://labix.org/gocheck

and the API documentation:

	https://gopkg.in/check.v1

 libsecp256k1

libsecp256k1

[image: Build Status] [https://travis-ci.org/bitcoin/secp256k1]

Optimized C library for EC operations on curve secp256k1.

This library is a work in progress and is being used to research best practices. Use at your own risk.

Features:

	secp256k1 ECDSA signing/verification and key generation.

	Adding/multiplying private/public keys.

	Serialization/parsing of private keys, public keys, signatures.

	Constant time, constant memory access signing and pubkey generation.

	Derandomized DSA (via RFC6979 or with a caller provided function.)

	Very efficient implementation.

Implementation details

	General
	No runtime heap allocation.

	Extensive testing infrastructure.

	Structured to facilitate review and analysis.

	Intended to be portable to any system with a C89 compiler and uint64_t support.

	Expose only higher level interfaces to minimize the API surface and improve application security. (“Be difficult to use insecurely.”)

	Field operations
	Optimized implementation of arithmetic modulo the curve’s field size (2^256 - 0x1000003D1).
	Using 5 52-bit limbs (including hand-optimized assembly for x86_64, by Diederik Huys).

	Using 10 26-bit limbs.

	Field inverses and square roots using a sliding window over blocks of 1s (by Peter Dettman).

	Scalar operations
	Optimized implementation without data-dependent branches of arithmetic modulo the curve’s order.
	Using 4 64-bit limbs (relying on __int128 support in the compiler).

	Using 8 32-bit limbs.

	Group operations
	Point addition formula specifically simplified for the curve equation (y^2 = x^3 + 7).

	Use addition between points in Jacobian and affine coordinates where possible.

	Use a unified addition/doubling formula where necessary to avoid data-dependent branches.

	Point/x comparison without a field inversion by comparison in the Jacobian coordinate space.

	Point multiplication for verification (aP + bG).
	Use wNAF notation for point multiplicands.

	Use a much larger window for multiples of G, using precomputed multiples.

	Use Shamir’s trick to do the multiplication with the public key and the generator simultaneously.

	Optionally (off by default) use secp256k1’s efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones.

	Point multiplication for signing
	Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions.

	Access the table with branch-free conditional moves so memory access is uniform.

	No data-dependent branches

	The precomputed tables add and eventually subtract points for which no known scalar (private key) is known, preventing even an attacker with control over the private key used to control the data internally.

Build steps

libsecp256k1 is built using autotools:

$./autogen.sh
$./configure
$ make
$./tests
$ sudo make install # optional

 common

common

[image: BuildStatus] [https://travis-ci.org/ethereum/go-ethereum]

The common package contains the ethereum utility library.

Installation

As a subdirectory the main go-ethereum repository, you get it with
go get github.com/ethereum/go-ethereum.

Usage

RLP (Recursive Linear Prefix) Encoding

RLP Encoding is an encoding scheme used by the Ethereum project. It
encodes any native value or list to a string.

More in depth information about the encoding scheme see the
Wiki [http://wiki.ethereum.org/index.php/RLP] article.

rlp := common.Encode("doge")
fmt.Printf("%q\n", rlp) // => "\0x83dog"

rlp = common.Encode([]interface{}{"dog", "cat"})
fmt.Printf("%q\n", rlp) // => "\0xc8\0x83dog\0x83cat"
decoded := common.Decode(rlp)
fmt.Println(decoded) // => ["dog" "cat"]

Patricia Trie

Patricie Tree is a merkle trie used by the Ethereum project.

More in depth information about the (modified) Patricia Trie can be
found on the Wiki [http://wiki.ethereum.org/index.php/Patricia_Tree].

The patricia trie uses a db as backend and could be anything as long as
it satisfies the Database interface found in common/db.go.

db := NewDatabase()

// db, root
trie := common.NewTrie(db, "")

trie.Put("puppy", "dog")
trie.Put("horse", "stallion")
trie.Put("do", "verb")
trie.Put("doge", "coin")

// Look up the key "do" in the trie
out := trie.Get("do")
fmt.Println(out) // => verb

trie.Delete("puppy")

The patricia trie, in combination with RLP, provides a robust,
cryptographically authenticated data structure that can be used to store
all (key, value) bindings.

// ... Create db/trie

// Note that RLP uses interface slices as list
value := common.Encode([]interface{}{"one", 2, "three", []interface{}{42}})
// Store the RLP encoded value of the list
trie.Put("mykey", value)

Value

Value is a Generic Value which is used in combination with RLP data or
([])interface{} structures. It may serve as a bridge between RLP data
and actual real values and takes care of all the type checking and
casting. Unlike Go’s reflect.Value it does not panic if it’s unable to
cast to the requested value. It simple returns the base value of that
type (e.g. Slice() returns []interface{}, Uint() return 0, etc).

Creating a new Value

NewEmptyValue() returns a new *Value with it’s initial value set to a
[]interface{}

AppendList() appends a list to the current value.

Append(v) appends the value (v) to the current value/list.

val := common.NewEmptyValue().Append(1).Append("2")
val.AppendList().Append(3)

Retrieving values

Get(i) returns the i item in the list.

Uint() returns the value as an unsigned int64.

Slice() returns the value as a interface slice.

Str() returns the value as a string.

Bytes() returns the value as a byte slice.

Len() assumes current to be a slice and returns its length.

Byte() returns the value as a single byte.

val := common.NewValue([]interface{}{1,"2",[]interface{}{3}})
val.Get(0).Uint() // => 1
val.Get(1).Str() // => "2"
s := val.Get(2) // => Value([]interface{}{3})
s.Get(0).Uint() // => 3

Decoding

Decoding streams of RLP data is simplified

val := common.NewValueFromBytes(rlpData)
val.Get(0).Uint()

Encoding

Encoding from Value to RLP is done with the Encode method. The
underlying value can be anything RLP can encode (int, str, lists, bytes)

val := common.NewValue([]interface{}{1,"2",[]interface{}{3}})
rlp := val.Encode()
// Store the rlp data
Store(rlp)

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/do